Предисловие   Главы  1  2  3  4  5  6  7  8   Приложения  1  

Связь между максимизацией прибыли...



Связи между максимизацией прибыли, с одной стороны, и максимизацией рентабельности оборота, рентабельности издержек и экономичности, с другой стороны (первый случай: заданы предполагаемая функция цена - сбыт и линейная функция издержек; второй случай: заданы условия атомистической конкуренции и дегрессивно-прогрессивная функция издержек)

28. Связь между максимизацией прибыли и максимизацией рентабельности капитала
В третьем квадранте представлена линейная функция капитала К = К(х). Если спроецировать функцию прибыли на функцию капитала, то в первом квадранте получим функцию прибыли от инвестированного капитала, т.е. G = G(K). Проекцию можно объяснить на примере грех точек, через которые проходят штриховые линии проекции. Отрезки между точками этой кривой и осью абсцис образуют угол а. Тангенс угла а выражает рентабельность R = О/К. Рентабельность достигает максимума в точке, где отрезок линейной функции становится касательной кривой ОТ. Для получения этой максимальной рентабельности необходимо инвестировать капитал в размере OR, а для получения максимума прибыли - в размере OS. Максимизирующему рентабельность объему инвестируемого капитала OR соответствует максимизирующий рентабельность объем производства 0В, максимизирующий же прибыль объем производства равен ОА, но ОА^ОВ. Относительно объема производства х цели максимизации прибыли и максимизации рентабельности капитала в области 0В взаимодополняемы, а в области ВА - наоборот, конкурирующие. Прирост прибыли вызывает снижение рентабельности капитала. Относительно инвестируемого капитала К цели в области OR взаимодополняемы, а в области RS - конкурирующие.
После выявления взаимосвязей между максимизацией прибыли и максимизацией рентабельности капитала можно выявить взаимосвязи между максимизацией прибыли и максимизацией рентабельности оборота, рентабельности издержек и экономичности.
На рис. 29 изображены кривые издержек и выручки для двух важных случаев. В первом случае представлены кривая выручки при предполагаемой функции цена - сбыт и линейна функция издержек. Во втором случае представлена линейная функция выручки в условиях атомистической конкуренции и депрессивно-прогрессивная функция издержек. Из разности обеих функций получают функцию прибыли G = G(x). Далее на рисунке представлены кривые средних издержек (удельных, или штучных издержек), предельных издержек и предельной выручки. Максимум прибыли получается в точке касания кривой прибыли и линии параллельной оси абсцис. Максимум прибыли в обоих, случаях равен Gmax = ОН. Максимизирующий прибыль объем производства в обоих случаях равен х = OF. При таком объеме производства кривая предельной выручки пересекает кривую предельных издержек в точке G. Касательная в точке Е показывает одинаковый подъем кривых выручки и издержек.
Связи между максимизацией прибыли, с одной стороны, и максимизацией рентабельности оборота, рентабельности издержек и экономичности, с другой стороны (первый случай: заданы предполагаемая функция цена - сбыт и линейная функция издержек; второй случай: заданы условия атомистической конкуренции и дегрессивно-прогрессивная функция издержек)

Для определения объема производства, максимизирующего рентабельность оборота, действует условие:



- Начало - - Назад - - Вперед -